Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Sci ; 22(5)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36256385

ABSTRACT

Navel orangeworm, Amyelois transitella (Walker), is a key pest of walnuts, pistachio, and almonds in California. Pheromone mating disruption using timed aerosol dispensers is an increasingly common management technique. Dispenser efficiency may be increased by timing releases with the active mating period of navel orangeworm. Past work found that the peak time of sexual activity for navel orangeworm females is 2 h before sunrise when temperatures are above 18°C. Inference of male responsiveness from data collected in that study was limited by the necessity of using laboratory-reared females as a source of sex pheromone emission to attract males and the inherent limitations of human observers for nocturnal events. Here we used camera traps baited with artificial pheromone to observe male navel orangeworm mating response in the field over two field seasons. Male response to synthetic pheromone exhibited diel patterns broadly similar to females, i.e., they were active for a brief period of 2-3 h before dawn under summer conditions and began responding to pheromone earlier and over a longer period of time during spring and fall. But contrary to the previous findings with females, some males were captured at all hours of the day and night, and there was no evidence of short-term change of pheromone responsiveness in response to temperature. Environmental effects on the response of navel orangeworm males to an artificial pheromone source differ in important ways from the environmental effects on female release of sex pheromone.


Subject(s)
Moths , Prunus dulcis , Sex Attractants , Humans , Male , Female , Animals , Sex Attractants/pharmacology , Moths/physiology , Pheromones/pharmacology , Aerosols
2.
Insects ; 12(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203602

ABSTRACT

Almonds and pistachios are fed upon by a diverse assemblage of lepidopteran insects, several of which are economically important pests. Unfortunately, identification of these pests can be difficult, as specimens are frequently damaged during collection, occur in traps with non-target species, and are morphologically similar up to their third instar. Here, we present a quantitative PCR based melt curve analysis for simple, rapid, and accurate identification of six lepidopteran pests of almonds and pistachios: navel orangeworm (Amyelois transitella), peach twig borer (Anarsia lineatella), oriental fruit moth (Grapholita molesta), obliquebanded leafroller (Choristoneura rosaceana), raisin moth (Cadra figulilella), and Indian meal moth (Plodia interpunctella). In this approach, the dissociation (melt) temperature(s) of a 658 bp section of cytochrome c oxidase subunit 1 was determined using quantitative PCR (qPCR). Within these six species, the distribution and the number of melt peak temperatures provide an unambiguous species level identification that is reproducible when unsheared DNA can be extracted. The test is robust across a variety of sampling approaches including insects removed from sticky card traps, museum specimens, and samples that were left in the field for up to 7 days. The melt curve's simplicity allows it to be performed in any basic molecular biology laboratory with a quantitative PCR.

3.
J Econ Entomol ; 114(4): 1542-1548, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34106254

ABSTRACT

Navel orangeworm (Pyralidae: Amyelois transitella) is a key pest of almonds and pistachios in California. Moths directly infest nuts which leads to reduced crop yield and quality, and infestation can predispose nuts to fungal pathogens that produce aflatoxins. While several integrated pest management strategies have been developed for A. transitella, studies have recently been initiated to explore the use of sterile insect technique (SIT) as an additional control tool. Mass-rearing, sterilization, and transportation methods originally developed for Pectinophora gossypiella (Lepidoptera: Gelechiidae) are currently being used for production of A. transitella in a mass-rearing facility, but the impacts of these processes on performance of A. transitella remain unclear. In this study, computerized flight mills were used to evaluate multiple flight parameters of mass-reared and irradiated A. transitella males and females relative to non-irradiated mass-reared moths and two strains of locally reared moths which were neither mass-reared nor irradiated. Mass-reared non-irradiated females performed similarly to both strains of locally reared females, flying a mean 9.4-11.8 km per night, whereas mass-reared and irradiated males and mass-reared non-irradiated males all flew shorter distances, in the range of 3.0-6.7 km per night. All of the mass-reared moths compared to locally reared moths had significantly more non-fliers that did not engage in more than two minutes of continuous flight. Findings from this study suggest that mass-rearing conditions reduce A. transitella flight capacity, while irradiation interacts with moths in a sex-specific manner.


Subject(s)
Moths , Pistacia , Prunus dulcis , Animals , Nuts
4.
Insect Biochem Mol Biol ; 123: 102917, 2020 08.
Article in English | MEDLINE | ID: mdl-28119199

ABSTRACT

Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only three aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, the Russian wheat aphid, Diuraphis noxia, and the green peach aphid, Myzus persicae. We present the whole genome sequence of a fourth aphid, the soybean aphid (Aphis glycines), which is an extreme specialist and an important invasive pest of soybean (Glycine max). The availability of genomic resources is important to establish effective and sustainable pest control, as well as to expand our understanding of aphid evolution. We generated a 302.9 Mbp draft genome assembly for Ap. glycines using a hybrid sequencing approach. This assembly shows high completeness with 19,182 predicted genes, 92% of known Ap. glycines transcripts mapping to contigs, and substantial continuity with a scaffold N50 of 174,505 bp. The assembly represents 95.5% of the predicted genome size of 317.1 Mbp based on flow cytometry. Ap. glycines contains the smallest known aphid genome to date, based on updated genome sizes for 19 aphid species. The repetitive DNA content of the Ap. glycines genome assembly (81.6 Mbp or 26.94% of the 302.9 Mbp assembly) shows a reduction in the number of classified transposable elements compared to Ac. pisum, and likely contributes to the small estimated genome size. We include comparative analyses of gene families related to host-specificity (cytochrome P450's and effectors), which may be important in Ap. glycines evolution. This Ap. glycines draft genome sequence will provide a resource for the study of aphid genome evolution, their interaction with host plants, and candidate genes for novel insect control methods.


Subject(s)
Aphids/genetics , Genome, Insect , Animals , Biological Evolution , Cytochrome P-450 Enzyme System/genetics , DNA Transposable Elements/genetics , Genome Size , Genomics , Pest Control , Phylogeny , Glycine max
5.
J Genomics ; 3: 85-94, 2015.
Article in English | MEDLINE | ID: mdl-26516375

ABSTRACT

Endosymbiosis with microorganisms is common in insects, with more than 10% of species requiring the metabolic capabilities of intracellular bacteria for their nutrient acquisition. Aphids harbor an obligate mutualism with the vertically transferred endosymbiont, Buchnera aphidicola, which produces key nutrients lacking in the aphid's phloem-based diet that are necessary for normal development and reproduction. It is thought that, in some groups of insects, bacterial symbionts may play key roles in biotype evolution against host-plant resistance. The genome of Buchnera has been sequenced in several aphid strains but little genomic data is currently available for the soybean aphid (Aphis glycines), one of the most important pests of soybean in North America. In this study, DNA sequencing was used to assemble and annotate the genome sequence of the Buchnera A. glycines strain and to reconstruct phylogenetic relationships among different strains. In addition, we identified several fixed Buchnera SNPs between Aphis glycines biotypes that were avirulent or virulent to a soybean aphid resistance gene (Rag1). The results of this study describe the genetic and evolutionary relationships of the Buchnera A. glycines strain, and begin to define the roles of an aphid symbiont in host-plant resistance.

6.
Evol Appl ; 6(7): 1041-53, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24187586

ABSTRACT

Adaptive evolution of pest insects in response to the introduction of resistant cultivars is well documented and commonly results in virulent (i.e., capable of feeding upon resistant cultivars) insect populations being labeled as distinct biotypes. Phenotypically defined, biotypes frequently remain evolutionarily indistinct, resulting in ineffective application of virulence control measures and shorter durability of resistant cultivars. Here, we utilize an evolutionary framework to discern the genetic relationship between biotypes of the soybean aphid (Aphis glycines, Matsumura). The soybean aphid is invasive in North America and is among the most destructive pests of commercial soybean on the continent. Attempts to breed host-plant-resistant soybean have been hampered by the emergence of virulent aphid biotypes that are unaffected by the plant's resistance mechanism(s). Comparative population genetic analysis of virulent and avirulent (i.e., unable to feed on resistant cultivars) biotypes found populations to be genetically indistinguishable across biotype and geographic distance, with high rates of interpopulation immigration and admixture. The lack of genetic distinction between biotypes coupled with elevated genotypic diversity within all populations suggested virulence has a nongenetic-based or includes a gene complex that is widely distributed throughout soybean aphid populations, which undergo regular dispersal and unimpeded sexual recombination.

7.
Genome ; 56(6): 345-50, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23957674

ABSTRACT

Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of the USA. A few studies have been conducted on the population genetic structure and genetic diversity of the soybean aphid and the source of its invasion in North America. Molecular markers, such as simple sequence repeats (SSRs) are very useful in the evaluation of population structure and genetic diversity. We used 18 SSR markers to assess the genetic diversity of soybean aphid collections from the USA, South Korea, and Japan. The aphids were collected from two sites in the USA (Indiana and South Dakota), two sites in South Korea (Yeonggwang district and Cheonan city), and one site in Japan (Utsunomiya). The SSR markers were highly effective in differentiating among aphid collections from different countries. The level of differentiation within each population and among populations from the same country was limited, even in the case of the USA where the two collection sites were more than 1200 km apart.


Subject(s)
Aphids/genetics , Genetic Variation , Animals , Genetics, Population , Indiana , Japan , Microsatellite Repeats , Polymorphism, Genetic , Principal Component Analysis , Republic of Korea , South Dakota , Glycine max , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...